pH-Dependence of the Aqueous Phase Room Temperature Brønsted Acid-Catalyzed Chemoselective Oxidation of Sulfides with H₂O₂.

نویسندگان

  • Hai-Min Shen
  • Wen-Jie Zhou
  • Xin Ma
  • Hong-Ke Wu
  • Wu-Bin Yu
  • Ning Ai
  • Hong-Bing Ji
  • Hong-Xin Shi
  • Yuan-Bin She
چکیده

A pH-dependence of the Brønsted acid-catalyzed oxidation of sulfides to the corresponding sulfoxides with H₂O₂ is reported for the first time based on our systematic investigation of the catalytic performance of a series of Brønsted acids. For all of the Brønsted acids investigated, the catalytic performances do not depend on the catalyst loading (mol ratio of Brønsted acid to substrate), but rather depend on the pH value of the aqueous reaction solution. All of them can give more than 98% conversion and selectivity in their aqueous solution at pH 1.30, no matter how much the catalyst loading is and what the Brønsted acid is. This pH-dependence principle is a very novel perspective to understand the Brønsted-acid catalysis system compared with our common understanding of the subject.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Room Temperature Synthesis of Mequinol by Using Ionic Liquids as Homogeneous Recyclable Catalysts

For the synthesis of Mequinol (4-methoxy phenol), two acidic ionic liquids based on imidazolium cation (BMSIL and IMSIL) synthesized and characterized by FT-IR, 1H NMR, and CHNS analyses. Tan, the Baeyer–Villiger oxidation of para-anisaldehyde was studied with these ionic liquids, as the catalysts. The results showed that the BMSIL with more Brønsted acidic functions had higher c...

متن کامل

Multi-wall Carbon Nanotubes Supported Molybdenum Acetylacetonate: Efficient and Highly Reusable Catalysts for Oxidation of Sulfides with Tert-butyl Hydroperoxide

In the present work, highly efficient oxidation of sulfides catalyzed by MoO2(acac)2 supported on multi-wall carbon nanotubes, MWCNTs, modified with 1,2-diaminobenzene (DAB) and 2-aminophenol (AP), at room temperature are reported. The effects of various parameters such as reaction time, solvent, catalyst amount, oxidant, etc, were studied. These heterogenized catalysts showed high activity in ...

متن کامل

Cellulose Sulfuric Acid: As an Efficient Bio Polymer Based Catalyst for the Selective Oxidation of Sulfides and Thiols by Hydrogen Peroxide

Cellulose sulfuric acid as a bio-polymer based solid catalyst efficiently catalyzes the selectively oxidation of sulfides to sulfoxides and thiols to disulfides using hydrogen peroxide as a green oxidant with good yields at room temperature. The developed method offers a number of advantages such as high selectivity, mild reaction conditions, simple operation, cleaner reaction profiles, low...

متن کامل

Efficient oxidation of sulfides using a molybdenum(VI)–dioxo complex containing an benzimidazole ligand

For the first time, dioxomolybdenum(VI) complex with the general formula [MoO2L2] containing a N-O bidentate ligands (HL=2-(o-aminophenyl)- benzimidazole) has been used for the oxidation of sulfides. Elemental analyses (carbon, hydrogen, nitrogen), FT-IR and Uv-Visble spectra and 1HNMR analysis agree well with the proposed stoicheiometry of the complex [MoO...

متن کامل

One-pot synthesis of highly regioselective β-azido alcohols catalyzed by Brønsted acidic ionic liquids

In this protocol, 3-(2-carboxybenzoyl)-1-methyl-1H-imidazol-3-ium chloride [Cbmim]Cl and sulfonic acid functionalized pyridinium chloride [pyridine-SO3H]Cl as a new, reusable, and green Brønsted acidic ionic liquid (BAIL) catalyst were synthesized and successfully used for the one-pot ring opening of epoxide with sodium azide (NaN3) in water at room temperature. Epoxides under ring-opening easi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 20 9  شماره 

صفحات  -

تاریخ انتشار 2015